# -*- coding: utf-8 -*-
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
"""The freesurfer module provides basic functions for interfacing with
   freesurfer tools.
"""

import os

from ...utils.filemanip import fname_presuffix, split_filename
from ..base import (
    TraitedSpec,
    File,
    traits,
    InputMultiPath,
    OutputMultiPath,
    Directory,
    isdefined,
)
from .base import FSCommand, FSTraitedSpec
from .utils import copy2subjdir

__docformat__ = "restructuredtext"


class MRISPreprocInputSpec(FSTraitedSpec):
    out_file = File(argstr="--out %s", genfile=True, desc="output filename")
    target = traits.Str(
        argstr="--target %s", mandatory=True, desc="target subject name"
    )
    hemi = traits.Enum(
        "lh",
        "rh",
        argstr="--hemi %s",
        mandatory=True,
        desc="hemisphere for source and target",
    )
    surf_measure = traits.Str(
        argstr="--meas %s",
        xor=("surf_measure", "surf_measure_file", "surf_area"),
        desc="Use subject/surf/hemi.surf_measure as input",
    )
    surf_area = traits.Str(
        argstr="--area %s",
        xor=("surf_measure", "surf_measure_file", "surf_area"),
        desc="Extract vertex area from subject/surf/hemi.surfname to use as input.",
    )
    subjects = traits.List(
        argstr="--s %s...",
        xor=("subjects", "fsgd_file", "subject_file"),
        desc="subjects from who measures are calculated",
    )
    fsgd_file = File(
        exists=True,
        argstr="--fsgd %s",
        xor=("subjects", "fsgd_file", "subject_file"),
        desc="specify subjects using fsgd file",
    )
    subject_file = File(
        exists=True,
        argstr="--f %s",
        xor=("subjects", "fsgd_file", "subject_file"),
        desc="file specifying subjects separated by white space",
    )
    surf_measure_file = InputMultiPath(
        File(exists=True),
        argstr="--is %s...",
        xor=("surf_measure", "surf_measure_file", "surf_area"),
        desc="file alternative to surfmeas, still requires list of subjects",
    )
    source_format = traits.Str(argstr="--srcfmt %s", desc="source format")
    surf_dir = traits.Str(
        argstr="--surfdir %s", desc="alternative directory (instead of surf)"
    )
    vol_measure_file = InputMultiPath(
        traits.Tuple(File(exists=True), File(exists=True)),
        argstr="--iv %s %s...",
        desc="list of volume measure and reg file tuples",
    )
    proj_frac = traits.Float(
        argstr="--projfrac %s", desc="projection fraction for vol2surf"
    )
    fwhm = traits.Float(
        argstr="--fwhm %f",
        xor=["num_iters"],
        desc="smooth by fwhm mm on the target surface",
    )
    num_iters = traits.Int(
        argstr="--niters %d",
        xor=["fwhm"],
        desc="niters : smooth by niters on the target surface",
    )
    fwhm_source = traits.Float(
        argstr="--fwhm-src %f",
        xor=["num_iters_source"],
        desc="smooth by fwhm mm on the source surface",
    )
    num_iters_source = traits.Int(
        argstr="--niterssrc %d",
        xor=["fwhm_source"],
        desc="niters : smooth by niters on the source surface",
    )
    smooth_cortex_only = traits.Bool(
        argstr="--smooth-cortex-only",
        desc="only smooth cortex (ie, exclude medial wall)",
    )


class MRISPreprocOutputSpec(TraitedSpec):
    out_file = File(desc="preprocessed output file")


class MRISPreproc(FSCommand):
    """Use FreeSurfer mris_preproc to prepare a group of contrasts for
    a second level analysis

    Examples
    --------
    >>> preproc = MRISPreproc()
    >>> preproc.inputs.target = 'fsaverage'
    >>> preproc.inputs.hemi = 'lh'
    >>> preproc.inputs.vol_measure_file = [('cont1.nii', 'register.dat'), \
                                           ('cont1a.nii', 'register.dat')]
    >>> preproc.inputs.out_file = 'concatenated_file.mgz'
    >>> preproc.cmdline
    'mris_preproc --hemi lh --out concatenated_file.mgz --target fsaverage --iv cont1.nii register.dat --iv cont1a.nii register.dat'

    """

    _cmd = "mris_preproc"
    input_spec = MRISPreprocInputSpec
    output_spec = MRISPreprocOutputSpec

    def _list_outputs(self):
        outputs = self.output_spec().get()
        outfile = self.inputs.out_file
        outputs["out_file"] = outfile
        if not isdefined(outfile):
            outputs["out_file"] = os.path.join(
                os.getcwd(), "concat_%s_%s.mgz" % (self.inputs.hemi, self.inputs.target)
            )
        return outputs

    def _gen_filename(self, name):
        if name == "out_file":
            return self._list_outputs()[name]
        return None


class MRISPreprocReconAllInputSpec(MRISPreprocInputSpec):
    surf_measure_file = File(
        exists=True,
        argstr="--meas %s",
        xor=("surf_measure", "surf_measure_file", "surf_area"),
        desc="file necessary for surfmeas",
    )
    surfreg_files = InputMultiPath(
        File(exists=True),
        argstr="--surfreg %s",
        requires=["lh_surfreg_target", "rh_surfreg_target"],
        desc="lh and rh input surface registration files",
    )
    lh_surfreg_target = File(
        desc="Implicit target surface registration file", requires=["surfreg_files"]
    )
    rh_surfreg_target = File(
        desc="Implicit target surface registration file", requires=["surfreg_files"]
    )
    subject_id = traits.String(
        "subject_id",
        argstr="--s %s",
        usedefault=True,
        xor=("subjects", "fsgd_file", "subject_file", "subject_id"),
        desc="subject from whom measures are calculated",
    )
    copy_inputs = traits.Bool(
        desc="If running as a node, set this to True "
        "this will copy some implicit inputs to the "
        "node directory."
    )


class MRISPreprocReconAll(MRISPreproc):
    """Extends MRISPreproc to allow it to be used in a recon-all workflow

    Examples
    --------
    >>> preproc = MRISPreprocReconAll()
    >>> preproc.inputs.target = 'fsaverage'
    >>> preproc.inputs.hemi = 'lh'
    >>> preproc.inputs.vol_measure_file = [('cont1.nii', 'register.dat'), \
                                           ('cont1a.nii', 'register.dat')]
    >>> preproc.inputs.out_file = 'concatenated_file.mgz'
    >>> preproc.cmdline
    'mris_preproc --hemi lh --out concatenated_file.mgz --s subject_id --target fsaverage --iv cont1.nii register.dat --iv cont1a.nii register.dat'

    """

    input_spec = MRISPreprocReconAllInputSpec

    def run(self, **inputs):
        if self.inputs.copy_inputs:
            self.inputs.subjects_dir = os.getcwd()
            if "subjects_dir" in inputs:
                inputs["subjects_dir"] = self.inputs.subjects_dir
            if isdefined(self.inputs.surf_dir):
                folder = self.inputs.surf_dir
            else:
                folder = "surf"
            if isdefined(self.inputs.surfreg_files):
                for surfreg in self.inputs.surfreg_files:
                    basename = os.path.basename(surfreg)
                    copy2subjdir(self, surfreg, folder, basename)
                    if basename.startswith("lh."):
                        copy2subjdir(
                            self,
                            self.inputs.lh_surfreg_target,
                            folder,
                            basename,
                            subject_id=self.inputs.target,
                        )
                    else:
                        copy2subjdir(
                            self,
                            self.inputs.rh_surfreg_target,
                            folder,
                            basename,
                            subject_id=self.inputs.target,
                        )

            if isdefined(self.inputs.surf_measure_file):
                copy2subjdir(self, self.inputs.surf_measure_file, folder)

        return super(MRISPreprocReconAll, self).run(**inputs)

    def _format_arg(self, name, spec, value):
        # mris_preproc looks for these files in the surf dir
        if name == "surfreg_files":
            basename = os.path.basename(value[0])
            return spec.argstr % basename.lstrip("rh.").lstrip("lh.")
        if name == "surf_measure_file":
            basename = os.path.basename(value)
            return spec.argstr % basename.lstrip("rh.").lstrip("lh.")
        return super(MRISPreprocReconAll, self)._format_arg(name, spec, value)


class GLMFitInputSpec(FSTraitedSpec):
    glm_dir = traits.Str(argstr="--glmdir %s", desc="save outputs to dir", genfile=True)
    in_file = File(
        desc="input 4D file", argstr="--y %s", mandatory=True, copyfile=False
    )
    _design_xor = ("fsgd", "design", "one_sample")
    fsgd = traits.Tuple(
        File(exists=True),
        traits.Enum("doss", "dods"),
        argstr="--fsgd %s %s",
        xor=_design_xor,
        desc="freesurfer descriptor file",
    )
    design = File(
        exists=True, argstr="--X %s", xor=_design_xor, desc="design matrix file"
    )
    contrast = InputMultiPath(
        File(exists=True), argstr="--C %s...", desc="contrast file"
    )

    one_sample = traits.Bool(
        argstr="--osgm",
        xor=("one_sample", "fsgd", "design", "contrast"),
        desc="construct X and C as a one-sample group mean",
    )
    no_contrast_ok = traits.Bool(
        argstr="--no-contrasts-ok", desc="do not fail if no contrasts specified"
    )
    per_voxel_reg = InputMultiPath(
        File(exists=True), argstr="--pvr %s...", desc="per-voxel regressors"
    )
    self_reg = traits.Tuple(
        traits.Int,
        traits.Int,
        traits.Int,
        argstr="--selfreg %d %d %d",
        desc="self-regressor from index col row slice",
    )
    weighted_ls = File(
        exists=True,
        argstr="--wls %s",
        xor=("weight_file", "weight_inv", "weight_sqrt"),
        desc="weighted least squares",
    )
    fixed_fx_var = File(
        exists=True, argstr="--yffxvar %s", desc="for fixed effects analysis"
    )
    fixed_fx_dof = traits.Int(
        argstr="--ffxdof %d",
        xor=["fixed_fx_dof_file"],
        desc="dof for fixed effects analysis",
    )
    fixed_fx_dof_file = File(
        argstr="--ffxdofdat %d",
        xor=["fixed_fx_dof"],
        desc="text file with dof for fixed effects analysis",
    )
    weight_file = File(
        exists=True, xor=["weighted_ls"], desc="weight for each input at each voxel"
    )
    weight_inv = traits.Bool(
        argstr="--w-inv", desc="invert weights", xor=["weighted_ls"]
    )
    weight_sqrt = traits.Bool(
        argstr="--w-sqrt", desc="sqrt of weights", xor=["weighted_ls"]
    )
    fwhm = traits.Range(low=0.0, argstr="--fwhm %f", desc="smooth input by fwhm")
    var_fwhm = traits.Range(
        low=0.0, argstr="--var-fwhm %f", desc="smooth variance by fwhm"
    )
    no_mask_smooth = traits.Bool(
        argstr="--no-mask-smooth", desc="do not mask when smoothing"
    )
    no_est_fwhm = traits.Bool(
        argstr="--no-est-fwhm", desc="turn off FWHM output estimation"
    )
    mask_file = File(exists=True, argstr="--mask %s", desc="binary mask")
    label_file = File(
        exists=True,
        argstr="--label %s",
        xor=["cortex"],
        desc="use label as mask, surfaces only",
    )
    cortex = traits.Bool(
        argstr="--cortex",
        xor=["label_file"],
        desc="use subjects ?h.cortex.label as label",
    )
    invert_mask = traits.Bool(argstr="--mask-inv", desc="invert mask")
    prune = traits.Bool(
        argstr="--prune",
        desc="remove voxels that do not have a non-zero value at each frame (def)",
    )
    no_prune = traits.Bool(
        argstr="--no-prune", xor=["prunethresh"], desc="do not prune"
    )
    prune_thresh = traits.Float(
        argstr="--prune_thr %f",
        xor=["noprune"],
        desc="prune threshold. Default is FLT_MIN",
    )
    compute_log_y = traits.Bool(
        argstr="--logy", desc="compute natural log of y prior to analysis"
    )
    save_estimate = traits.Bool(
        argstr="--yhat-save", desc="save signal estimate (yhat)"
    )
    save_residual = traits.Bool(argstr="--eres-save", desc="save residual error (eres)")
    save_res_corr_mtx = traits.Bool(
        argstr="--eres-scm",
        desc="save residual error spatial correlation matrix (eres.scm). Big!",
    )
    surf = traits.Bool(
        argstr="--surf %s %s %s",
        requires=["subject_id", "hemi"],
        desc="analysis is on a surface mesh",
    )
    subject_id = traits.Str(desc="subject id for surface geometry")
    hemi = traits.Enum("lh", "rh", desc="surface hemisphere")
    surf_geo = traits.Str(
        "white", usedefault=True, desc="surface geometry name (e.g. white, pial)"
    )
    simulation = traits.Tuple(
        traits.Enum("perm", "mc-full", "mc-z"),
        traits.Int(min=1),
        traits.Float,
        traits.Str,
        argstr="--sim %s %d %f %s",
        desc="nulltype nsim thresh csdbasename",
    )
    sim_sign = traits.Enum(
        "abs", "pos", "neg", argstr="--sim-sign %s", desc="abs, pos, or neg"
    )
    uniform = traits.Tuple(
        traits.Float,
        traits.Float,
        argstr="--uniform %f %f",
        desc="use uniform distribution instead of gaussian",
    )
    pca = traits.Bool(argstr="--pca", desc="perform pca/svd analysis on residual")
    calc_AR1 = traits.Bool(
        argstr="--tar1", desc="compute and save temporal AR1 of residual"
    )
    save_cond = traits.Bool(
        argstr="--save-cond", desc="flag to save design matrix condition at each voxel"
    )
    vox_dump = traits.Tuple(
        traits.Int,
        traits.Int,
        traits.Int,
        argstr="--voxdump %d %d %d",
        desc="dump voxel GLM and exit",
    )
    seed = traits.Int(argstr="--seed %d", desc="used for synthesizing noise")
    synth = traits.Bool(argstr="--synth", desc="replace input with gaussian")
    resynth_test = traits.Int(argstr="--resynthtest %d", desc="test GLM by resynthsis")
    profile = traits.Int(argstr="--profile %d", desc="niters : test speed")
    force_perm = traits.Bool(
        argstr="--perm-force",
        desc="force perumtation test, even when design matrix is not orthog",
    )
    diag = traits.Int(argstr="--diag %d", desc="Gdiag_no : set diagnositc level")
    diag_cluster = traits.Bool(
        argstr="--diag-cluster", desc="save sig volume and exit from first sim loop"
    )
    debug = traits.Bool(argstr="--debug", desc="turn on debugging")
    check_opts = traits.Bool(
        argstr="--checkopts", desc="don't run anything, just check options and exit"
    )
    allow_repeated_subjects = traits.Bool(
        argstr="--allowsubjrep",
        desc="allow subject names to repeat in the fsgd file (must appear before --fsgd",
    )
    allow_ill_cond = traits.Bool(
        argstr="--illcond", desc="allow ill-conditioned design matrices"
    )
    sim_done_file = File(
        argstr="--sim-done %s", desc="create file when simulation finished"
    )


class GLMFitOutputSpec(TraitedSpec):

    glm_dir = Directory(exists=True, desc="output directory")
    beta_file = File(exists=True, desc="map of regression coefficients")
    error_file = File(desc="map of residual error")
    error_var_file = File(desc="map of residual error variance")
    error_stddev_file = File(desc="map of residual error standard deviation")
    estimate_file = File(desc="map of the estimated Y values")
    mask_file = File(desc="map of the mask used in the analysis")
    fwhm_file = File(desc="text file with estimated smoothness")
    dof_file = File(desc="text file with effective degrees-of-freedom for the analysis")
    gamma_file = OutputMultiPath(desc="map of contrast of regression coefficients")
    gamma_var_file = OutputMultiPath(desc="map of regression contrast variance")
    sig_file = OutputMultiPath(desc="map of F-test significance (in -log10p)")
    ftest_file = OutputMultiPath(desc="map of test statistic values")
    spatial_eigenvectors = File(desc="map of spatial eigenvectors from residual PCA")
    frame_eigenvectors = File(desc="matrix of frame eigenvectors from residual PCA")
    singular_values = File(desc="matrix singular values from residual PCA")
    svd_stats_file = File(desc="text file summarizing the residual PCA")


class GLMFit(FSCommand):
    """Use FreeSurfer's mri_glmfit to specify and estimate a general linear model.

    Examples
    --------
    >>> glmfit = GLMFit()
    >>> glmfit.inputs.in_file = 'functional.nii'
    >>> glmfit.inputs.one_sample = True
    >>> glmfit.cmdline == 'mri_glmfit --glmdir %s --y functional.nii --osgm'%os.getcwd()
    True

    """

    _cmd = "mri_glmfit"
    input_spec = GLMFitInputSpec
    output_spec = GLMFitOutputSpec

    def _format_arg(self, name, spec, value):
        if name == "surf":
            _si = self.inputs
            return spec.argstr % (_si.subject_id, _si.hemi, _si.surf_geo)
        return super(GLMFit, self)._format_arg(name, spec, value)

    def _list_outputs(self):
        outputs = self.output_spec().get()
        # Get the top-level output directory
        if not isdefined(self.inputs.glm_dir):
            glmdir = os.getcwd()
        else:
            glmdir = os.path.abspath(self.inputs.glm_dir)
        outputs["glm_dir"] = glmdir

        # Assign the output files that always get created
        outputs["beta_file"] = os.path.join(glmdir, "beta.mgh")
        outputs["error_var_file"] = os.path.join(glmdir, "rvar.mgh")
        outputs["error_stddev_file"] = os.path.join(glmdir, "rstd.mgh")
        outputs["mask_file"] = os.path.join(glmdir, "mask.mgh")
        outputs["fwhm_file"] = os.path.join(glmdir, "fwhm.dat")
        outputs["dof_file"] = os.path.join(glmdir, "dof.dat")
        # Assign the conditional outputs
        if isdefined(self.inputs.save_residual) and self.inputs.save_residual:
            outputs["error_file"] = os.path.join(glmdir, "eres.mgh")
        if isdefined(self.inputs.save_estimate) and self.inputs.save_estimate:
            outputs["estimate_file"] = os.path.join(glmdir, "yhat.mgh")

        # Get the contrast directory name(s)
        if isdefined(self.inputs.contrast):
            contrasts = []
            for c in self.inputs.contrast:
                if split_filename(c)[2] in [".mat", ".dat", ".mtx", ".con"]:
                    contrasts.append(split_filename(c)[1])
                else:
                    contrasts.append(os.path.split(c)[1])
        elif isdefined(self.inputs.one_sample) and self.inputs.one_sample:
            contrasts = ["osgm"]

        # Add in the contrast images
        outputs["sig_file"] = [os.path.join(glmdir, c, "sig.mgh") for c in contrasts]
        outputs["ftest_file"] = [os.path.join(glmdir, c, "F.mgh") for c in contrasts]
        outputs["gamma_file"] = [
            os.path.join(glmdir, c, "gamma.mgh") for c in contrasts
        ]
        outputs["gamma_var_file"] = [
            os.path.join(glmdir, c, "gammavar.mgh") for c in contrasts
        ]

        # Add in the PCA results, if relevant
        if isdefined(self.inputs.pca) and self.inputs.pca:
            pcadir = os.path.join(glmdir, "pca-eres")
            outputs["spatial_eigenvectors"] = os.path.join(pcadir, "v.mgh")
            outputs["frame_eigenvectors"] = os.path.join(pcadir, "u.mtx")
            outputs["singluar_values"] = os.path.join(pcadir, "sdiag.mat")
            outputs["svd_stats_file"] = os.path.join(pcadir, "stats.dat")

        return outputs

    def _gen_filename(self, name):
        if name == "glm_dir":
            return os.getcwd()
        return None


class OneSampleTTest(GLMFit):
    def __init__(self, **kwargs):
        super(OneSampleTTest, self).__init__(**kwargs)
        self.inputs.one_sample = True


class BinarizeInputSpec(FSTraitedSpec):
    in_file = File(
        exists=True,
        argstr="--i %s",
        mandatory=True,
        copyfile=False,
        desc="input volume",
    )
    min = traits.Float(argstr="--min %f", xor=["wm_ven_csf"], desc="min thresh")
    max = traits.Float(argstr="--max %f", xor=["wm_ven_csf"], desc="max thresh")
    rmin = traits.Float(argstr="--rmin %f", desc="compute min based on rmin*globalmean")
    rmax = traits.Float(argstr="--rmax %f", desc="compute max based on rmax*globalmean")
    match = traits.List(
        traits.Int, argstr="--match %d...", desc="match instead of threshold"
    )
    wm = traits.Bool(
        argstr="--wm", desc="set match vals to 2 and 41 (aseg for cerebral WM)"
    )
    ventricles = traits.Bool(
        argstr="--ventricles",
        desc="set match vals those for aseg ventricles+choroid (not 4th)",
    )
    wm_ven_csf = traits.Bool(
        argstr="--wm+vcsf",
        xor=["min", "max"],
        desc="WM and ventricular CSF, including choroid (not 4th)",
    )
    binary_file = File(argstr="--o %s", genfile=True, desc="binary output volume")
    out_type = traits.Enum("nii", "nii.gz", "mgz", argstr="", desc="output file type")
    count_file = traits.Either(
        traits.Bool,
        File,
        argstr="--count %s",
        desc="save number of hits in ascii file (hits, ntotvox, pct)",
    )
    bin_val = traits.Int(
        argstr="--binval %d", desc="set vox within thresh to val (default is 1)"
    )
    bin_val_not = traits.Int(
        argstr="--binvalnot %d", desc="set vox outside range to val (default is 0)"
    )
    invert = traits.Bool(argstr="--inv", desc="set binval=0, binvalnot=1")
    frame_no = traits.Int(
        argstr="--frame %s", desc="use 0-based frame of input (default is 0)"
    )
    merge_file = File(exists=True, argstr="--merge %s", desc="merge with mergevol")
    mask_file = File(exists=True, argstr="--mask maskvol", desc="must be within mask")
    mask_thresh = traits.Float(argstr="--mask-thresh %f", desc="set thresh for mask")
    abs = traits.Bool(
        argstr="--abs", desc="take abs of invol first (ie, make unsigned)"
    )
    bin_col_num = traits.Bool(
        argstr="--bincol", desc="set binarized voxel value to its column number"
    )
    zero_edges = traits.Bool(argstr="--zero-edges", desc="zero the edge voxels")
    zero_slice_edge = traits.Bool(
        argstr="--zero-slice-edges", desc="zero the edge slice voxels"
    )
    dilate = traits.Int(argstr="--dilate %d", desc="niters: dilate binarization in 3D")
    erode = traits.Int(
        argstr="--erode  %d",
        desc="nerode: erode binarization in 3D (after any dilation)",
    )
    erode2d = traits.Int(
        argstr="--erode2d %d",
        desc="nerode2d: erode binarization in 2D (after any 3D erosion)",
    )


class BinarizeOutputSpec(TraitedSpec):
    binary_file = File(exists=True, desc="binarized output volume")
    count_file = File(desc="ascii file containing number of hits")


class Binarize(FSCommand):
    """Use FreeSurfer mri_binarize to threshold an input volume

    Examples
    --------
    >>> binvol = Binarize(in_file='structural.nii', min=10, binary_file='foo_out.nii')
    >>> binvol.cmdline
    'mri_binarize --o foo_out.nii --i structural.nii --min 10.000000'

    """

    _cmd = "mri_binarize"
    input_spec = BinarizeInputSpec
    output_spec = BinarizeOutputSpec

    def _list_outputs(self):
        outputs = self.output_spec().get()
        outfile = self.inputs.binary_file
        if not isdefined(outfile):
            if isdefined(self.inputs.out_type):
                outfile = fname_presuffix(
                    self.inputs.in_file,
                    newpath=os.getcwd(),
                    suffix=".".join(("_thresh", self.inputs.out_type)),
                    use_ext=False,
                )
            else:
                outfile = fname_presuffix(
                    self.inputs.in_file, newpath=os.getcwd(), suffix="_thresh"
                )
        outputs["binary_file"] = os.path.abspath(outfile)
        value = self.inputs.count_file
        if isdefined(value):
            if isinstance(value, bool):
                if value:
                    outputs["count_file"] = fname_presuffix(
                        self.inputs.in_file,
                        suffix="_count.txt",
                        newpath=os.getcwd(),
                        use_ext=False,
                    )
            else:
                outputs["count_file"] = value
        return outputs

    def _format_arg(self, name, spec, value):
        if name == "count_file":
            if isinstance(value, bool):
                fname = self._list_outputs()[name]
            else:
                fname = value
            return spec.argstr % fname
        if name == "out_type":
            return ""
        return super(Binarize, self)._format_arg(name, spec, value)

    def _gen_filename(self, name):
        if name == "binary_file":
            return self._list_outputs()[name]
        return None


class ConcatenateInputSpec(FSTraitedSpec):
    in_files = InputMultiPath(
        File(exists=True),
        desc="Individual volumes to be concatenated",
        argstr="--i %s...",
        mandatory=True,
    )
    concatenated_file = File(desc="Output volume", argstr="--o %s", genfile=True)
    sign = traits.Enum(
        "abs",
        "pos",
        "neg",
        argstr="--%s",
        desc="Take only pos or neg voxles from input, or take abs",
    )
    stats = traits.Enum(
        "sum",
        "var",
        "std",
        "max",
        "min",
        "mean",
        argstr="--%s",
        desc="Compute the sum, var, std, max, min or mean of the input volumes",
    )
    paired_stats = traits.Enum(
        "sum",
        "avg",
        "diff",
        "diff-norm",
        "diff-norm1",
        "diff-norm2",
        argstr="--paired-%s",
        desc="Compute paired sum, avg, or diff",
    )
    gmean = traits.Int(
        argstr="--gmean %d", desc="create matrix to average Ng groups, Nper=Ntot/Ng"
    )
    mean_div_n = traits.Bool(
        argstr="--mean-div-n", desc="compute mean/nframes (good for var)"
    )
    multiply_by = traits.Float(
        argstr="--mul %f", desc="Multiply input volume by some amount"
    )
    add_val = traits.Float(
        argstr="--add %f", desc="Add some amount to the input volume"
    )
    multiply_matrix_file = File(
        exists=True, argstr="--mtx %s", desc="Multiply input by an ascii matrix in file"
    )
    combine = traits.Bool(
        argstr="--combine", desc="Combine non-zero values into single frame volume"
    )
    keep_dtype = traits.Bool(
        argstr="--keep-datatype", desc="Keep voxelwise precision type (default is float"
    )
    max_bonfcor = traits.Bool(
        argstr="--max-bonfcor",
        desc="Compute max and bonferroni correct (assumes -log10(ps))",
    )
    max_index = traits.Bool(
        argstr="--max-index",
        desc="Compute the index of max voxel in concatenated volumes",
    )
    mask_file = File(exists=True, argstr="--mask %s", desc="Mask input with a volume")
    vote = traits.Bool(
        argstr="--vote",
        desc="Most frequent value at each voxel and fraction of occurances",
    )
    sort = traits.Bool(argstr="--sort", desc="Sort each voxel by ascending frame value")


class ConcatenateOutputSpec(TraitedSpec):
    concatenated_file = File(exists=True, desc="Path/name of the output volume")


class Concatenate(FSCommand):
    """Use Freesurfer mri_concat to combine several input volumes
    into one output volume.  Can concatenate by frames, or compute
    a variety of statistics on the input volumes.

    Examples
    --------
    Combine two input volumes into one volume with two frames

    >>> concat = Concatenate()
    >>> concat.inputs.in_files = ['cont1.nii', 'cont2.nii']
    >>> concat.inputs.concatenated_file = 'bar.nii'
    >>> concat.cmdline
    'mri_concat --o bar.nii --i cont1.nii --i cont2.nii'

    """

    _cmd = "mri_concat"
    input_spec = ConcatenateInputSpec
    output_spec = ConcatenateOutputSpec

    def _list_outputs(self):
        outputs = self.output_spec().get()

        fname = self.inputs.concatenated_file
        if not isdefined(fname):
            fname = "concat_output.nii.gz"
        outputs["concatenated_file"] = os.path.join(os.getcwd(), fname)
        return outputs

    def _gen_filename(self, name):
        if name == "concatenated_file":
            return self._list_outputs()[name]
        return None


class SegStatsInputSpec(FSTraitedSpec):
    _xor_inputs = ("segmentation_file", "annot", "surf_label")
    segmentation_file = File(
        exists=True,
        argstr="--seg %s",
        xor=_xor_inputs,
        mandatory=True,
        desc="segmentation volume path",
    )
    annot = traits.Tuple(
        traits.Str,
        traits.Enum("lh", "rh"),
        traits.Str,
        argstr="--annot %s %s %s",
        xor=_xor_inputs,
        mandatory=True,
        desc="subject hemi parc : use surface parcellation",
    )
    surf_label = traits.Tuple(
        traits.Str,
        traits.Enum("lh", "rh"),
        traits.Str,
        argstr="--slabel %s %s %s",
        xor=_xor_inputs,
        mandatory=True,
        desc="subject hemi label : use surface label",
    )
    summary_file = File(
        argstr="--sum %s",
        genfile=True,
        position=-1,
        desc="Segmentation stats summary table file",
    )
    partial_volume_file = File(
        exists=True, argstr="--pv %s", desc="Compensate for partial voluming"
    )
    in_file = File(
        exists=True,
        argstr="--i %s",
        desc="Use the segmentation to report stats on this volume",
    )
    frame = traits.Int(
        argstr="--frame %d", desc="Report stats on nth frame of input volume"
    )
    multiply = traits.Float(argstr="--mul %f", desc="multiply input by val")
    calc_snr = traits.Bool(
        argstr="--snr", desc="save mean/std as extra column in output table"
    )
    calc_power = traits.Enum(
        "sqr",
        "sqrt",
        argstr="--%s",
        desc="Compute either the sqr or the sqrt of the input",
    )
    _ctab_inputs = ("color_table_file", "default_color_table", "gca_color_table")
    color_table_file = File(
        exists=True,
        argstr="--ctab %s",
        xor=_ctab_inputs,
        desc="color table file with seg id names",
    )
    default_color_table = traits.Bool(
        argstr="--ctab-default",
        xor=_ctab_inputs,
        desc="use $FREESURFER_HOME/FreeSurferColorLUT.txt",
    )
    gca_color_table = File(
        exists=True,
        argstr="--ctab-gca %s",
        xor=_ctab_inputs,
        desc="get color table from GCA (CMA)",
    )
    segment_id = traits.List(
        argstr="--id %s...", desc="Manually specify segmentation ids"
    )
    exclude_id = traits.Int(argstr="--excludeid %d", desc="Exclude seg id from report")
    exclude_ctx_gm_wm = traits.Bool(
        argstr="--excl-ctxgmwm", desc="exclude cortical gray and white matter"
    )
    wm_vol_from_surf = traits.Bool(
        argstr="--surf-wm-vol", desc="Compute wm volume from surf"
    )
    cortex_vol_from_surf = traits.Bool(
        argstr="--surf-ctx-vol", desc="Compute cortex volume from surf"
    )
    non_empty_only = traits.Bool(
        argstr="--nonempty", desc="Only report nonempty segmentations"
    )
    empty = traits.Bool(
        argstr="--empty", desc="Report on segmentations listed in the color table"
    )
    mask_file = File(
        exists=True, argstr="--mask %s", desc="Mask volume (same size as seg"
    )
    mask_thresh = traits.Float(
        argstr="--maskthresh %f", desc="binarize mask with this threshold <0.5>"
    )
    mask_sign = traits.Enum(
        "abs",
        "pos",
        "neg",
        "--masksign %s",
        desc="Sign for mask threshold: pos, neg, or abs",
    )
    mask_frame = traits.Int(
        "--maskframe %d",
        requires=["mask_file"],
        desc="Mask with this (0 based) frame of the mask volume",
    )
    mask_invert = traits.Bool(
        argstr="--maskinvert", desc="Invert binarized mask volume"
    )
    mask_erode = traits.Int(argstr="--maskerode %d", desc="Erode mask by some amount")
    brain_vol = traits.Enum(
        "brain-vol-from-seg",
        "brainmask",
        argstr="--%s",
        desc="Compute brain volume either with ``brainmask`` or ``brain-vol-from-seg``",
    )
    brainmask_file = File(
        argstr="--brainmask %s",
        exists=True,
        desc="Load brain mask and compute the volume of the brain as the non-zero voxels in this volume",
    )
    etiv = traits.Bool(argstr="--etiv", desc="Compute ICV from talairach transform")
    etiv_only = traits.Enum(
        "etiv",
        "old-etiv",
        "--%s-only",
        desc="Compute etiv and exit.  Use ``etiv`` or ``old-etiv``",
    )
    avgwf_txt_file = traits.Either(
        traits.Bool,
        File,
        argstr="--avgwf %s",
        desc="Save average waveform into file (bool or filename)",
    )
    avgwf_file = traits.Either(
        traits.Bool,
        File,
        argstr="--avgwfvol %s",
        desc="Save as binary volume (bool or filename)",
    )
    sf_avg_file = traits.Either(
        traits.Bool, File, argstr="--sfavg %s", desc="Save mean across space and time"
    )
    vox = traits.List(
        traits.Int,
        argstr="--vox %s",
        desc="Replace seg with all 0s except at C R S (three int inputs)",
    )
    supratent = traits.Bool(argstr="--supratent", desc="Undocumented input flag")
    subcort_gm = traits.Bool(
        argstr="--subcortgray", desc="Compute volume of subcortical gray matter"
    )
    total_gray = traits.Bool(
        argstr="--totalgray", desc="Compute volume of total gray matter"
    )
    euler = traits.Bool(
        argstr="--euler",
        desc="Write out number of defect holes in orig.nofix based on the euler number",
    )
    in_intensity = File(
        argstr="--in %s --in-intensity-name %s", desc="Undocumented input norm.mgz file"
    )
    intensity_units = traits.Enum(
        "MR",
        argstr="--in-intensity-units %s",
        requires=["in_intensity"],
        desc="Intensity units",
    )


class SegStatsOutputSpec(TraitedSpec):
    summary_file = File(exists=True, desc="Segmentation summary statistics table")
    avgwf_txt_file = File(
        desc="Text file with functional statistics averaged over segs"
    )
    avgwf_file = File(desc="Volume with functional statistics averaged over segs")
    sf_avg_file = File(
        desc="Text file with func statistics averaged over segs and framss"
    )


class SegStats(FSCommand):
    """Use FreeSurfer mri_segstats for ROI analysis

    Examples
    --------
    >>> import nipype.interfaces.freesurfer as fs
    >>> ss = fs.SegStats()
    >>> ss.inputs.annot = ('PWS04', 'lh', 'aparc')
    >>> ss.inputs.in_file = 'functional.nii'
    >>> ss.inputs.subjects_dir = '.'
    >>> ss.inputs.avgwf_txt_file = 'avgwf.txt'
    >>> ss.inputs.summary_file = 'summary.stats'
    >>> ss.cmdline
    'mri_segstats --annot PWS04 lh aparc --avgwf ./avgwf.txt --i functional.nii --sum ./summary.stats'

    """

    _cmd = "mri_segstats"
    input_spec = SegStatsInputSpec
    output_spec = SegStatsOutputSpec

    def _list_outputs(self):
        outputs = self.output_spec().get()
        if isdefined(self.inputs.summary_file):
            outputs["summary_file"] = os.path.abspath(self.inputs.summary_file)
        else:
            outputs["summary_file"] = os.path.join(os.getcwd(), "summary.stats")
        suffices = dict(
            avgwf_txt_file="_avgwf.txt",
            avgwf_file="_avgwf.nii.gz",
            sf_avg_file="sfavg.txt",
        )
        if isdefined(self.inputs.segmentation_file):
            _, src = os.path.split(self.inputs.segmentation_file)
        if isdefined(self.inputs.annot):
            src = "_".join(self.inputs.annot)
        if isdefined(self.inputs.surf_label):
            src = "_".join(self.inputs.surf_label)
        for name, suffix in list(suffices.items()):
            value = getattr(self.inputs, name)
            if isdefined(value):
                if isinstance(value, bool):
                    outputs[name] = fname_presuffix(
                        src, suffix=suffix, newpath=os.getcwd(), use_ext=False
                    )
                else:
                    outputs[name] = os.path.abspath(value)
        return outputs

    def _format_arg(self, name, spec, value):
        if name in ("summary_file", "avgwf_txt_file"):
            if not isinstance(value, bool):
                if not os.path.isabs(value):
                    value = os.path.join(".", value)
        if name in ["avgwf_txt_file", "avgwf_file", "sf_avg_file"]:
            if isinstance(value, bool):
                fname = self._list_outputs()[name]
            else:
                fname = value
            return spec.argstr % fname
        elif name == "in_intensity":
            intensity_name = os.path.basename(self.inputs.in_intensity).replace(
                ".mgz", ""
            )
            return spec.argstr % (value, intensity_name)
        return super(SegStats, self)._format_arg(name, spec, value)

    def _gen_filename(self, name):
        if name == "summary_file":
            return self._list_outputs()[name]
        return None


class SegStatsReconAllInputSpec(SegStatsInputSpec):
    # recon-all input requirements
    subject_id = traits.String(
        "subject_id",
        usedefault=True,
        argstr="--subject %s",
        mandatory=True,
        desc="Subject id being processed",
    )
    # implicit
    ribbon = File(mandatory=True, exists=True, desc="Input file mri/ribbon.mgz")
    presurf_seg = File(exists=True, desc="Input segmentation volume")
    transform = File(mandatory=True, exists=True, desc="Input transform file")
    lh_orig_nofix = File(mandatory=True, exists=True, desc="Input lh.orig.nofix")
    rh_orig_nofix = File(mandatory=True, exists=True, desc="Input rh.orig.nofix")
    lh_white = File(
        mandatory=True,
        exists=True,
        desc="Input file must be <subject_id>/surf/lh.white",
    )
    rh_white = File(
        mandatory=True,
        exists=True,
        desc="Input file must be <subject_id>/surf/rh.white",
    )
    lh_pial = File(
        mandatory=True, exists=True, desc="Input file must be <subject_id>/surf/lh.pial"
    )
    rh_pial = File(
        mandatory=True, exists=True, desc="Input file must be <subject_id>/surf/rh.pial"
    )
    aseg = File(exists=True, desc="Mandatory implicit input in 5.3")
    copy_inputs = traits.Bool(
        desc="If running as a node, set this to True "
        "otherwise, this will copy the implicit inputs "
        "to the node directory."
    )


class SegStatsReconAll(SegStats):
    """
    This class inherits SegStats and modifies it for use in a recon-all workflow.
    This implementation mandates implicit inputs that SegStats.
    To ensure backwards compatability of SegStats, this class was created.

    Examples
    --------
    >>> from nipype.interfaces.freesurfer import SegStatsReconAll
    >>> segstatsreconall = SegStatsReconAll()
    >>> segstatsreconall.inputs.annot = ('PWS04', 'lh', 'aparc')
    >>> segstatsreconall.inputs.avgwf_txt_file = 'avgwf.txt'
    >>> segstatsreconall.inputs.summary_file = 'summary.stats'
    >>> segstatsreconall.inputs.subject_id = '10335'
    >>> segstatsreconall.inputs.ribbon = 'wm.mgz'
    >>> segstatsreconall.inputs.transform = 'trans.mat'
    >>> segstatsreconall.inputs.presurf_seg = 'wm.mgz'
    >>> segstatsreconall.inputs.lh_orig_nofix = 'lh.pial'
    >>> segstatsreconall.inputs.rh_orig_nofix = 'lh.pial'
    >>> segstatsreconall.inputs.lh_pial = 'lh.pial'
    >>> segstatsreconall.inputs.rh_pial = 'lh.pial'
    >>> segstatsreconall.inputs.lh_white = 'lh.pial'
    >>> segstatsreconall.inputs.rh_white = 'lh.pial'
    >>> segstatsreconall.inputs.empty = True
    >>> segstatsreconall.inputs.brain_vol = 'brain-vol-from-seg'
    >>> segstatsreconall.inputs.exclude_ctx_gm_wm = True
    >>> segstatsreconall.inputs.supratent = True
    >>> segstatsreconall.inputs.subcort_gm = True
    >>> segstatsreconall.inputs.etiv = True
    >>> segstatsreconall.inputs.wm_vol_from_surf = True
    >>> segstatsreconall.inputs.cortex_vol_from_surf = True
    >>> segstatsreconall.inputs.total_gray = True
    >>> segstatsreconall.inputs.euler = True
    >>> segstatsreconall.inputs.exclude_id = 0
    >>> segstatsreconall.cmdline
    'mri_segstats --annot PWS04 lh aparc --avgwf ./avgwf.txt --brain-vol-from-seg --surf-ctx-vol --empty --etiv --euler --excl-ctxgmwm --excludeid 0 --subcortgray --subject 10335 --supratent --totalgray --surf-wm-vol --sum ./summary.stats'

    """

    input_spec = SegStatsReconAllInputSpec
    output_spec = SegStatsOutputSpec

    def _format_arg(self, name, spec, value):
        if name == "brainmask_file":
            return spec.argstr % os.path.basename(value)
        return super(SegStatsReconAll, self)._format_arg(name, spec, value)

    def run(self, **inputs):
        if self.inputs.copy_inputs:
            self.inputs.subjects_dir = os.getcwd()
            if "subjects_dir" in inputs:
                inputs["subjects_dir"] = self.inputs.subjects_dir
            copy2subjdir(self, self.inputs.lh_orig_nofix, "surf", "lh.orig.nofix")
            copy2subjdir(self, self.inputs.rh_orig_nofix, "surf", "rh.orig.nofix")
            copy2subjdir(self, self.inputs.lh_white, "surf", "lh.white")
            copy2subjdir(self, self.inputs.rh_white, "surf", "rh.white")
            copy2subjdir(self, self.inputs.lh_pial, "surf", "lh.pial")
            copy2subjdir(self, self.inputs.rh_pial, "surf", "rh.pial")
            copy2subjdir(self, self.inputs.ribbon, "mri", "ribbon.mgz")
            copy2subjdir(self, self.inputs.presurf_seg, "mri", "aseg.presurf.mgz")
            copy2subjdir(self, self.inputs.aseg, "mri", "aseg.mgz")
            copy2subjdir(
                self,
                self.inputs.transform,
                os.path.join("mri", "transforms"),
                "talairach.xfm",
            )
            copy2subjdir(self, self.inputs.in_intensity, "mri")
            copy2subjdir(self, self.inputs.brainmask_file, "mri")
        return super(SegStatsReconAll, self).run(**inputs)


class Label2VolInputSpec(FSTraitedSpec):
    label_file = InputMultiPath(
        File(exists=True),
        argstr="--label %s...",
        xor=("label_file", "annot_file", "seg_file", "aparc_aseg"),
        copyfile=False,
        mandatory=True,
        desc="list of label files",
    )
    annot_file = File(
        exists=True,
        argstr="--annot %s",
        xor=("label_file", "annot_file", "seg_file", "aparc_aseg"),
        requires=("subject_id", "hemi"),
        mandatory=True,
        copyfile=False,
        desc="surface annotation file",
    )
    seg_file = File(
        exists=True,
        argstr="--seg %s",
        xor=("label_file", "annot_file", "seg_file", "aparc_aseg"),
        mandatory=True,
        copyfile=False,
        desc="segmentation file",
    )
    aparc_aseg = traits.Bool(
        argstr="--aparc+aseg",
        xor=("label_file", "annot_file", "seg_file", "aparc_aseg"),
        mandatory=True,
        desc="use aparc+aseg.mgz in subjectdir as seg",
    )
    template_file = File(
        exists=True, argstr="--temp %s", mandatory=True, desc="output template volume"
    )
    reg_file = File(
        exists=True,
        argstr="--reg %s",
        xor=("reg_file", "reg_header", "identity"),
        desc="tkregister style matrix VolXYZ = R*LabelXYZ",
    )
    reg_header = File(
        exists=True,
        argstr="--regheader %s",
        xor=("reg_file", "reg_header", "identity"),
        desc="label template volume",
    )
    identity = traits.Bool(
        argstr="--identity", xor=("reg_file", "reg_header", "identity"), desc="set R=I"
    )
    invert_mtx = traits.Bool(
        argstr="--invertmtx", desc="Invert the registration matrix"
    )
    fill_thresh = traits.Range(
        0.0, 1.0, argstr="--fillthresh %g", desc="thresh : between 0 and 1"
    )
    label_voxel_volume = traits.Float(
        argstr="--labvoxvol %f", desc="volume of each label point (def 1mm3)"
    )
    proj = traits.Tuple(
        traits.Enum("abs", "frac"),
        traits.Float,
        traits.Float,
        traits.Float,
        argstr="--proj %s %f %f %f",
        requires=("subject_id", "hemi"),
        desc="project along surface normal",
    )
    subject_id = traits.Str(argstr="--subject %s", desc="subject id")
    hemi = traits.Enum(
        "lh", "rh", argstr="--hemi %s", desc="hemisphere to use lh or rh"
    )
    surface = traits.Str(argstr="--surf %s", desc="use surface instead of white")
    vol_label_file = File(argstr="--o %s", genfile=True, desc="output volume")
    label_hit_file = File(
        argstr="--hits %s", desc="file with each frame is nhits for a label"
    )
    map_label_stat = File(
        argstr="--label-stat %s", desc="map the label stats field into the vol"
    )
    native_vox2ras = traits.Bool(
        argstr="--native-vox2ras",
        desc="use native vox2ras xform instead of  tkregister-style",
    )


class Label2VolOutputSpec(TraitedSpec):
    vol_label_file = File(exists=True, desc="output volume")


class Label2Vol(FSCommand):
    """Make a binary volume from a Freesurfer label

    Examples
    --------
    >>> binvol = Label2Vol(label_file='cortex.label', template_file='structural.nii', reg_file='register.dat', fill_thresh=0.5, vol_label_file='foo_out.nii')
    >>> binvol.cmdline
    'mri_label2vol --fillthresh 0.5 --label cortex.label --reg register.dat --temp structural.nii --o foo_out.nii'

    """

    _cmd = "mri_label2vol"
    input_spec = Label2VolInputSpec
    output_spec = Label2VolOutputSpec

    def _list_outputs(self):
        outputs = self.output_spec().get()
        outfile = self.inputs.vol_label_file
        if not isdefined(outfile):
            for key in ["label_file", "annot_file", "seg_file"]:
                if isdefined(getattr(self.inputs, key)):
                    path = getattr(self.inputs, key)
                    if isinstance(path, list):
                        path = path[0]
                    _, src = os.path.split(path)
            if isdefined(self.inputs.aparc_aseg):
                src = "aparc+aseg.mgz"
            outfile = fname_presuffix(
                src, suffix="_vol.nii.gz", newpath=os.getcwd(), use_ext=False
            )
        outputs["vol_label_file"] = outfile
        return outputs

    def _gen_filename(self, name):
        if name == "vol_label_file":
            return self._list_outputs()[name]
        return None


class MS_LDAInputSpec(FSTraitedSpec):
    lda_labels = traits.List(
        traits.Int(),
        argstr="-lda %s",
        mandatory=True,
        minlen=2,
        maxlen=2,
        sep=" ",
        desc="pair of class labels to optimize",
    )
    weight_file = File(
        argstr="-weight %s",
        mandatory=True,
        desc="filename for the LDA weights (input or output)",
    )
    vol_synth_file = File(
        exists=False,
        argstr="-synth %s",
        mandatory=True,
        desc=("filename for the synthesized output " "volume"),
    )
    label_file = File(
        exists=True, argstr="-label %s", desc="filename of the label volume"
    )
    mask_file = File(
        exists=True, argstr="-mask %s", desc="filename of the brain mask volume"
    )
    shift = traits.Int(
        argstr="-shift %d", desc="shift all values equal to the given value to zero"
    )
    conform = traits.Bool(
        argstr="-conform",
        desc=("Conform the input volumes (brain mask " "typically already conformed)"),
    )
    use_weights = traits.Bool(
        argstr="-W", desc=("Use the weights from a previously " "generated weight file")
    )
    images = InputMultiPath(
        File(exists=True),
        argstr="%s",
        mandatory=True,
        copyfile=False,
        desc="list of input FLASH images",
        position=-1,
    )


class MS_LDAOutputSpec(TraitedSpec):
    weight_file = File(exists=True, desc="")
    vol_synth_file = File(exists=True, desc="")


class MS_LDA(FSCommand):
    """Perform LDA reduction on the intensity space of an arbitrary # of FLASH images

    Examples
    --------
    >>> grey_label = 2
    >>> white_label = 3
    >>> zero_value = 1
    >>> optimalWeights = MS_LDA(lda_labels=[grey_label, white_label], \
                                label_file='label.mgz', weight_file='weights.txt', \
                                shift=zero_value, vol_synth_file='synth_out.mgz', \
                                conform=True, use_weights=True, \
                                images=['FLASH1.mgz', 'FLASH2.mgz', 'FLASH3.mgz'])
    >>> optimalWeights.cmdline
    'mri_ms_LDA -conform -label label.mgz -lda 2 3 -shift 1 -W -synth synth_out.mgz -weight weights.txt FLASH1.mgz FLASH2.mgz FLASH3.mgz'

    """

    _cmd = "mri_ms_LDA"
    input_spec = MS_LDAInputSpec
    output_spec = MS_LDAOutputSpec

    def _list_outputs(self):
        outputs = self._outputs().get()
        if isdefined(self.inputs.output_synth):
            outputs["vol_synth_file"] = os.path.abspath(self.inputs.output_synth)
        else:
            outputs["vol_synth_file"] = os.path.abspath(self.inputs.vol_synth_file)
        if not isdefined(self.inputs.use_weights) or self.inputs.use_weights is False:
            outputs["weight_file"] = os.path.abspath(self.inputs.weight_file)
        return outputs

    def _verify_weights_file_exists(self):
        if not os.path.exists(os.path.abspath(self.inputs.weight_file)):
            raise traits.TraitError(
                "MS_LDA: use_weights must accompany an existing weights file"
            )

    def _format_arg(self, name, spec, value):
        if name == "use_weights":
            if self.inputs.use_weights is True:
                self._verify_weights_file_exists()
            else:
                return ""
                # TODO: Fix bug when boolean values are set explicitly to false
        return super(MS_LDA, self)._format_arg(name, spec, value)

    def _gen_filename(self, name):
        pass


class Label2LabelInputSpec(FSTraitedSpec):
    hemisphere = traits.Enum(
        "lh", "rh", argstr="--hemi %s", mandatory=True, desc="Input hemisphere"
    )
    subject_id = traits.String(
        "subject_id",
        usedefault=True,
        argstr="--trgsubject %s",
        mandatory=True,
        desc="Target subject",
    )
    sphere_reg = File(
        mandatory=True, exists=True, desc="Implicit input <hemisphere>.sphere.reg"
    )
    white = File(mandatory=True, exists=True, desc="Implicit input <hemisphere>.white")
    source_sphere_reg = File(
        mandatory=True, exists=True, desc="Implicit input <hemisphere>.sphere.reg"
    )
    source_white = File(
        mandatory=True, exists=True, desc="Implicit input <hemisphere>.white"
    )
    source_label = File(
        argstr="--srclabel %s", mandatory=True, exists=True, desc="Source label"
    )
    source_subject = traits.String(
        argstr="--srcsubject %s", mandatory=True, desc="Source subject name"
    )
    # optional
    out_file = File(
        argstr="--trglabel %s",
        name_source=["source_label"],
        name_template="%s_converted",
        hash_files=False,
        keep_extension=True,
        desc="Target label",
    )
    registration_method = traits.Enum(
        "surface",
        "volume",
        usedefault=True,
        argstr="--regmethod %s",
        desc="Registration method",
    )
    copy_inputs = traits.Bool(
        desc="If running as a node, set this to True."
        + "This will copy the input files to the node "
        + "directory."
    )


class Label2LabelOutputSpec(TraitedSpec):
    out_file = File(exists=True, desc="Output label")


class Label2Label(FSCommand):
    """
    Converts a label in one subject's space to a label
    in another subject's space using either talairach or spherical
    as an intermediate registration space.

    If a source mask is used, then the input label must have been
    created from a surface (ie, the vertex numbers are valid). The
    format can be anything supported by mri_convert or curv or paint.
    Vertices in the source label that do not meet threshold in the
    mask will be removed from the label.

    Examples
    --------
    >>> from nipype.interfaces.freesurfer import Label2Label
    >>> l2l = Label2Label()
    >>> l2l.inputs.hemisphere = 'lh'
    >>> l2l.inputs.subject_id = '10335'
    >>> l2l.inputs.sphere_reg = 'lh.pial'
    >>> l2l.inputs.white = 'lh.pial'
    >>> l2l.inputs.source_subject = 'fsaverage'
    >>> l2l.inputs.source_label = 'lh-pial.stl'
    >>> l2l.inputs.source_white = 'lh.pial'
    >>> l2l.inputs.source_sphere_reg = 'lh.pial'
    >>> l2l.cmdline
    'mri_label2label --hemi lh --trglabel lh-pial_converted.stl --regmethod surface --srclabel lh-pial.stl --srcsubject fsaverage --trgsubject 10335'
    """

    _cmd = "mri_label2label"
    input_spec = Label2LabelInputSpec
    output_spec = Label2LabelOutputSpec

    def _list_outputs(self):
        outputs = self._outputs().get()
        outputs["out_file"] = os.path.join(
            self.inputs.subjects_dir,
            self.inputs.subject_id,
            "label",
            self.inputs.out_file,
        )
        return outputs

    def run(self, **inputs):
        if self.inputs.copy_inputs:
            self.inputs.subjects_dir = os.getcwd()
            if "subjects_dir" in inputs:
                inputs["subjects_dir"] = self.inputs.subjects_dir
            hemi = self.inputs.hemisphere
            copy2subjdir(
                self, self.inputs.sphere_reg, "surf", "{0}.sphere.reg".format(hemi)
            )
            copy2subjdir(self, self.inputs.white, "surf", "{0}.white".format(hemi))
            copy2subjdir(
                self,
                self.inputs.source_sphere_reg,
                "surf",
                "{0}.sphere.reg".format(hemi),
                subject_id=self.inputs.source_subject,
            )
            copy2subjdir(
                self,
                self.inputs.source_white,
                "surf",
                "{0}.white".format(hemi),
                subject_id=self.inputs.source_subject,
            )

        # label dir must exist in order for output file to be written
        label_dir = os.path.join(
            self.inputs.subjects_dir, self.inputs.subject_id, "label"
        )
        if not os.path.isdir(label_dir):
            os.makedirs(label_dir)

        return super(Label2Label, self).run(**inputs)


class Label2AnnotInputSpec(FSTraitedSpec):
    # required
    hemisphere = traits.Enum(
        "lh", "rh", argstr="--hemi %s", mandatory=True, desc="Input hemisphere"
    )
    subject_id = traits.String(
        "subject_id",
        usedefault=True,
        argstr="--s %s",
        mandatory=True,
        desc="Subject name/ID",
    )
    in_labels = traits.List(
        argstr="--l %s...", mandatory=True, desc="List of input label files"
    )
    out_annot = traits.String(
        argstr="--a %s", mandatory=True, desc="Name of the annotation to create"
    )
    orig = File(exists=True, mandatory=True, desc="implicit {hemisphere}.orig")
    # optional
    keep_max = traits.Bool(
        argstr="--maxstatwinner", desc="Keep label with highest 'stat' value"
    )
    verbose_off = traits.Bool(
        argstr="--noverbose", desc="Turn off overlap and stat override messages"
    )
    color_table = File(
        argstr="--ctab %s",
        exists=True,
        desc="File that defines the structure names, their indices, and their color",
    )
    copy_inputs = traits.Bool(
        desc="copy implicit inputs and create a temp subjects_dir"
    )


class Label2AnnotOutputSpec(TraitedSpec):
    out_file = File(exists=True, desc="Output annotation file")


class Label2Annot(FSCommand):
    """
    Converts a set of surface labels to an annotation file

    Examples
    --------
    >>> from nipype.interfaces.freesurfer import Label2Annot
    >>> l2a = Label2Annot()
    >>> l2a.inputs.hemisphere = 'lh'
    >>> l2a.inputs.subject_id = '10335'
    >>> l2a.inputs.in_labels = ['lh.aparc.label']
    >>> l2a.inputs.orig = 'lh.pial'
    >>> l2a.inputs.out_annot = 'test'
    >>> l2a.cmdline
    'mris_label2annot --hemi lh --l lh.aparc.label --a test --s 10335'
    """

    _cmd = "mris_label2annot"
    input_spec = Label2AnnotInputSpec
    output_spec = Label2AnnotOutputSpec

    def run(self, **inputs):
        if self.inputs.copy_inputs:
            self.inputs.subjects_dir = os.getcwd()
            if "subjects_dir" in inputs:
                inputs["subjects_dir"] = self.inputs.subjects_dir
            copy2subjdir(
                self,
                self.inputs.orig,
                folder="surf",
                basename="{0}.orig".format(self.inputs.hemisphere),
            )
        # label dir must exist in order for output file to be written
        label_dir = os.path.join(
            self.inputs.subjects_dir, self.inputs.subject_id, "label"
        )
        if not os.path.isdir(label_dir):
            os.makedirs(label_dir)
        return super(Label2Annot, self).run(**inputs)

    def _list_outputs(self):
        outputs = self._outputs().get()
        outputs["out_file"] = os.path.join(
            str(self.inputs.subjects_dir),
            str(self.inputs.subject_id),
            "label",
            str(self.inputs.hemisphere) + "." + str(self.inputs.out_annot) + ".annot",
        )
        return outputs


class SphericalAverageInputSpec(FSTraitedSpec):
    out_file = File(
        argstr="%s", genfile=True, exists=False, position=-1, desc="Output filename"
    )
    in_average = Directory(
        argstr="%s", exists=True, genfile=True, position=-2, desc="Average subject"
    )
    in_surf = File(
        argstr="%s", mandatory=True, exists=True, position=-3, desc="Input surface file"
    )
    hemisphere = traits.Enum(
        "lh", "rh", argstr="%s", mandatory=True, position=-4, desc="Input hemisphere"
    )
    fname = traits.String(
        argstr="%s",
        mandatory=True,
        position=-5,
        desc="""\
Filename from the average subject directory.
Example: to use rh.entorhinal.label as the input label filename, set fname to 'rh.entorhinal'
and which to 'label'. The program will then search for
``<in_average>/label/rh.entorhinal.label``""",
    )
    which = traits.Enum(
        "coords",
        "label",
        "vals",
        "curv",
        "area",
        argstr="%s",
        mandatory=True,
        position=-6,
        desc="No documentation",
    )
    subject_id = traits.String(argstr="-o %s", mandatory=True, desc="Output subject id")
    # optional
    erode = traits.Int(argstr="-erode %d", desc="Undocumented")
    in_orig = File(argstr="-orig %s", exists=True, desc="Original surface filename")
    threshold = traits.Float(argstr="-t %.1f", desc="Undocumented")


class SphericalAverageOutputSpec(TraitedSpec):
    out_file = File(exists=False, desc="Output label")


class SphericalAverage(FSCommand):
    """
    This program will add a template into an average surface.

    Examples
    --------
    >>> from nipype.interfaces.freesurfer import SphericalAverage
    >>> sphericalavg = SphericalAverage()
    >>> sphericalavg.inputs.out_file = 'test.out'
    >>> sphericalavg.inputs.in_average = '.'
    >>> sphericalavg.inputs.in_surf = 'lh.pial'
    >>> sphericalavg.inputs.hemisphere = 'lh'
    >>> sphericalavg.inputs.fname = 'lh.entorhinal'
    >>> sphericalavg.inputs.which = 'label'
    >>> sphericalavg.inputs.subject_id = '10335'
    >>> sphericalavg.inputs.erode = 2
    >>> sphericalavg.inputs.threshold = 5
    >>> sphericalavg.cmdline
    'mris_spherical_average -erode 2 -o 10335 -t 5.0 label lh.entorhinal lh pial . test.out'

    """

    _cmd = "mris_spherical_average"
    input_spec = SphericalAverageInputSpec
    output_spec = SphericalAverageOutputSpec

    def _format_arg(self, name, spec, value):
        if name == "in_orig" or name == "in_surf":
            surf = os.path.basename(value)
            for item in ["lh.", "rh."]:
                surf = surf.replace(item, "")
            return spec.argstr % surf
        return super(SphericalAverage, self)._format_arg(name, spec, value)

    def _gen_filename(self, name):
        if name == "in_average":
            avg_subject = str(self.inputs.hemisphere) + ".EC_average"
            avg_directory = os.path.join(self.inputs.subjects_dir, avg_subject)
            if not os.path.isdir(avg_directory):
                fs_home = os.path.abspath(os.environ.get("FREESURFER_HOME"))
            return avg_subject
        elif name == "out_file":
            return self._list_outputs()[name]
        else:
            return None

    def _list_outputs(self):
        outputs = self._outputs().get()
        if isdefined(self.inputs.out_file):
            outputs["out_file"] = os.path.abspath(self.inputs.out_file)
        else:
            out_dir = os.path.join(
                self.inputs.subjects_dir, self.inputs.subject_id, "label"
            )
            if isdefined(self.inputs.in_average):
                basename = os.path.basename(self.inputs.in_average)
                basename = basename.replace("_", "_exvivo_") + ".label"
            else:
                basename = str(self.inputs.hemisphere) + ".EC_exvivo_average.label"
            outputs["out_file"] = os.path.join(out_dir, basename)
        return outputs
