3
pd)                 @   s  d Z d3Zg ZxPeD ]HZyee W q ek
rX Z zeje de  W Y ddZ[X qX qW erteddje [[[dd	l	m
Z
mZmZmZ ydd
lmZmZmZ W nD ek
r Z z(eejddZede deW Y ddZ[X nX ddlmZmZmZmZmZmZ ddlZ ddl!m"Z"m#Z#m$Z$m%Z%m&Z&m'Z'm(Z(m)Z)m*Z*m+Z+m,Z,m-Z-m.Z.m/Z/m0Z0m1Z1m2Z2m3Z3m4Z4m5Z5m6Z6m7Z7m8Z8m9Z9m:Z:m;Z;m<Z<m=Z=m>Z>m?Z?m@Z@mAZAmBZBmCZCmDZDmEZEmFZFmGZGmHZHmIZImJZJmKZKmLZLmMZMmNZNmOZOmPZPmQZQmRZRmSZSmTZTmUZUmVZVmWZWmXZX ddlYmZZZ ddl[m\Z\ ddl]m^Z^ ddl_m`Z` ddlambZbmcZcmdZdmeZemfZfmgZgmhZhmiZimjZjmkZkmlZlmmZmmnZn ddloZ ddlpmqZq ddlrmsZsmtZtmuZumvZvmwZwmxZxmyZymzZzm{Z{m|Z|m}Z}m~Z~mZmZmZmZmZmZmZmZmZmZmZ ddlmZ ddlmZ ddlZ ddlZ ddlmZ e Zejded ZejdZ[[e jjrLdd  ZnG d!d" d"ZG d#d$ d$ZG d%d& d&ZG d'd( d(Ze ZG d)d* d*eZG d+d, d,ed-ZeZG d.d/ d/eZG d0d1 d1ed-ZeZd2ZdS )4Zrestructuredtextnumpypytzdateutilz: Nz(Unable to import required dependencies:

    )_np_version_under1p16_np_version_under1p17_np_version_under1p18_is_numpy_dev)	hashtablelibtslibzcannot import name  zC extension: z not built. If you want to import pandas from the source directory, you may need to run 'python setup.py build_ext --inplace --force' to build the C extensions first.)
get_option
set_optionreset_optiondescribe_optionoption_contextoptions)7	Int8Dtype
Int16Dtype
Int32Dtype
Int64Dtype
UInt8DtypeUInt16DtypeUInt32DtypeUInt64DtypeCategoricalDtypePeriodDtypeIntervalDtypeDatetimeTZDtypeStringDtypeBooleanDtypeNAisnaisnullnotnanotnullIndexCategoricalIndex
Int64IndexUInt64Index
RangeIndexFloat64Index
MultiIndexIntervalIndexTimedeltaIndexDatetimeIndexPeriodIndex
IndexSliceNaTPeriodperiod_range	Timedeltatimedelta_range	Timestamp
date_rangebdate_rangeIntervalinterval_range
DateOffset
to_numericto_datetimeto_timedeltaGrouper	factorizeuniquevalue_countsNamedAggarrayCategoricalset_eng_float_formatSeries	DataFrame)SparseDtype)
infer_freq)offsets)eval)concatlreshapemeltwide_to_longmerge
merge_asofmerge_orderedcrosstabpivotpivot_tableget_dummiescutqcut)show_versions)	ExcelFileExcelWriter
read_excelread_csvread_fwf
read_tableread_pickle	to_pickleHDFStoreread_hdfread_sqlread_sql_queryread_sql_tableread_clipboardread_parquetread_orcread_featherread_gbq	read_html	read_json
read_stataread_sas	read_spss)_json_normalize)test   )get_versionszclosest-tagversionzfull-revisionidc             C   s   dd l }| dkr2|jdtdd G dd d}|S | dkrZ|jdtdd dd	lm} |S | d
kr~|jdtdd dd l}|S | dkr|jd|  dtdd t| f i S | dkr|jdtdd ddlm} |S td|  dd S )Nr   PanelzzThe Panel class is removed from pandas. Accessing it from the top-level namespace will also be removed in the next version   )
stacklevelc               @   s   e Zd ZdS )z__getattr__.<locals>.PanelN)__name__
__module____qualname__ r   r   1/tmp/pip-build-7vycvbft/pandas/pandas/__init__.pyry      s   datetimezThe pandas.datetime class is deprecated and will be removed from pandas in a future version. Import from datetime module instead.)r   npzuThe pandas.np module is deprecated and will be removed from pandas in a future version. Import numpy directly insteadSparseSeriesSparseDataFramezThe zq class is removed from pandas. Accessing it from the top-level namespace will also be removed in the next versionSparseArrayzThe pandas.SparseArray class is deprecated and will be removed from pandas in a future version. Use pandas.arrays.SparseArray instead.)r   z"module 'pandas' has no attribute ''>   r   r   )	warningswarnFutureWarningr   r   typepandas.core.arrays.sparser   AttributeError)namer   ry   dtr   Z_SparseArrayr   r   r   __getattr__   sH    
r   c               @   s   e Zd ZdS )ry   N)r|   r}   r~   r   r   r   r   ry     s   ry   c               @   s   e Zd ZdS )r   N)r|   r}   r~   r   r   r   r   r   
  s   r   c               @   s   e Zd ZdS )r   N)r|   r}   r~   r   r   r   r   r     s   r   c               @   s   e Zd Zdd Zdd ZdS )__numpyc             C   s    dd l }dd l}|| _|| _d S )Nr   )r   r   r   )selfr   r   r   r   r   __init__  s    z__numpy.__init__c             C   sV   | j jdtdd yt| j|S  tk
rP } ztd| |W Y d d }~X nX d S )NzuThe pandas.np module is deprecated and will be removed from pandas in a future version. Import numpy directly insteadrz   )r{   zmodule numpy has no attribute )r   r   r   getattrr   r   )r   itemerrr   r   r   r     s    z__numpy.__getattr__N)r|   r}   r~   r   r   r   r   r   r   r     s   r   c               @   s,   e Zd ZddlmZ eZdd Zdd ZdS )
__Datetimer   )r   c             C   sL   | j   yt| j|S  tk
rF } ztd| |W Y d d }~X nX d S )Nz!module datetime has no attribute )emit_warningr   r   r   )clsr   r   r   r   r   r   .  s    
z__Datetime.__getattr__c             C   s   t || jS )N)
isinstancer   )r   otherr   r   r   __instancecheck__8  s    z__Datetime.__instancecheck__N)r|   r}   r~   r   r   r   r   r   r   r   r   r   (  s   
r   c               @   s   e Zd ZdddZdd ZdS )__DatetimeSubr   c             C   s   dd l }|jdtdd d S )Nr   zzThe pandas.datetime class is deprecated and will be removed from pandas in a future version. Import from datetime instead.   )r{   )r   r   r   )dummyr   r   r   r   r   <  s
    z__DatetimeSub.emit_warningc             O   s   | j   ddlm} |||S )Nr   )r   )r   r   )r   argskwargsr   r   r   r   __new__G  s    z__DatetimeSub.__new__N)r   )r|   r}   r~   r   r   r   r   r   r   r   ;  s   
r   )	metaclassc               @   s$   e Zd ZddlmZ eZdd ZdS )__SparseArrayr   )r   c             C   s   t || jS )N)r   r   )r   r   r   r   r   r   U  s    z__SparseArray.__instancecheck__N)r|   r}   r~   r   r   sar   r   r   r   r   r   O  s   r   c               @   s   e Zd ZdddZdd ZdS )__SparseArraySubr   c             C   s   dd l }|jdtdd d S )Nr   zThe pandas.SparseArray class is deprecated and will be removed from pandas in a future version. Use pandas.arrays.SparseArray instead.r   )r{   )r   r   r   )r   r   r   r   r   r   Y  s
    z__SparseArraySub.emit_warningc             O   s   | j   ddlm} |||S )Nr   )r   )r   r   r   )r   r   r   r   r   r   r   r   d  s    z__SparseArraySub.__new__N)r   )r|   r}   r~   r   r   r   r   r   r   r   X  s   
r   a  
pandas - a powerful data analysis and manipulation library for Python
=====================================================================

**pandas** is a Python package providing fast, flexible, and expressive data
structures designed to make working with "relational" or "labeled" data both
easy and intuitive. It aims to be the fundamental high-level building block for
doing practical, **real world** data analysis in Python. Additionally, it has
the broader goal of becoming **the most powerful and flexible open source data
analysis / manipulation tool available in any language**. It is already well on
its way toward this goal.

Main Features
-------------
Here are just a few of the things that pandas does well:

  - Easy handling of missing data in floating point as well as non-floating
    point data.
  - Size mutability: columns can be inserted and deleted from DataFrame and
    higher dimensional objects
  - Automatic and explicit data alignment: objects can be explicitly aligned
    to a set of labels, or the user can simply ignore the labels and let
    `Series`, `DataFrame`, etc. automatically align the data for you in
    computations.
  - Powerful, flexible group by functionality to perform split-apply-combine
    operations on data sets, for both aggregating and transforming data.
  - Make it easy to convert ragged, differently-indexed data in other Python
    and NumPy data structures into DataFrame objects.
  - Intelligent label-based slicing, fancy indexing, and subsetting of large
    data sets.
  - Intuitive merging and joining data sets.
  - Flexible reshaping and pivoting of data sets.
  - Hierarchical labeling of axes (possible to have multiple labels per tick).
  - Robust IO tools for loading data from flat files (CSV and delimited),
    Excel files, databases, and saving/loading data from the ultrafast HDF5
    format.
  - Time series-specific functionality: date range generation and frequency
    conversion, moving window statistics, date shifting and lagging.
)r   r   r   )Z__docformat__Zhard_dependenciesZmissing_dependencies
dependency
__import__ImportErroreappendjoinZpandas.compat.numpyr   r   r   r	   Zpandas._libsr
   Z
_hashtabler   Z_libr   Z_tslibstrreplacemoduleZpandas._configr   r   r   r   r   r   Zpandas.core.config_initZpandasZpandas.core.apir   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r,   r-   r.   r/   r0   r1   r2   r3   r4   r5   r6   r7   r8   r9   r:   r;   r<   r=   r>   r?   r@   rA   rB   rC   rD   rE   rF   rG   rH   rI   rJ   r   rK   Zpandas.tseries.apirL   Zpandas.tseriesrM   Zpandas.core.computation.apirN   Zpandas.core.reshape.apirO   rP   rQ   rR   rS   rT   rU   rV   rW   rX   rY   rZ   r[   Z
pandas.apiZpandas.util._print_versionsr\   Zpandas.io.apir]   r^   r_   r`   ra   rb   rc   rd   re   rf   rg   rh   ri   rj   rk   rl   rm   rn   ro   rp   rq   rr   rs   Zpandas.io.jsonrt   Zjson_normalizeZpandas.util._testerru   Zpandas.testingZpandas.arrays_versionrw   vget__version__Z__git_version__compatZPY37r   ry   r   r   r   r   r   r   r   r   r   r   r   __doc__r   r   r   r   <module>   sj   
* 
@<d 


G	*