3
qd                 @   s   d Z ddlZddlmZmZ ddlZddlmZ ddlm	Z
 ddlmZmZ dejfeeee edd	d
Zdeee dddZdS )z pickle compat     N)AnyOptional)FilePathOrBuffer)pickle_compat)get_filepath_or_buffer
get_handleinfer)objfilepath_or_buffercompressionprotocolc       
      C   s   t ||dd\}}}}t|t r.|dkr.d}t|d|dd\}}|dk rPtj}z|jtj| |d W d|j  x|D ]}	|	j  qxW |ry|j  W n t	k
r   Y nX X dS )	a  
    Pickle (serialize) object to file.

    Parameters
    ----------
    obj : any object
        Any python object.
    filepath_or_buffer : str, path object or file-like object
        File path, URL, or buffer where the pickled object will be stored.

        .. versionchanged:: 1.0.0
           Accept URL. URL has to be of S3 or GCS.

    compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None}, default 'infer'
        If 'infer' and 'path_or_url' is path-like, then detect compression from
        the following extensions: '.gz', '.bz2', '.zip', or '.xz' (otherwise no
        compression) If 'infer' and 'path_or_url' is not path-like, then use
        None (= no decompression).
    protocol : int
        Int which indicates which protocol should be used by the pickler,
        default HIGHEST_PROTOCOL (see [1], paragraph 12.1.2). The possible
        values for this parameter depend on the version of Python. For Python
        2.x, possible values are 0, 1, 2. For Python>=3.0, 3 is a valid value.
        For Python >= 3.4, 4 is a valid value. A negative value for the
        protocol parameter is equivalent to setting its value to
        HIGHEST_PROTOCOL.

        .. [1] https://docs.python.org/3/library/pickle.html

    See Also
    --------
    read_pickle : Load pickled pandas object (or any object) from file.
    DataFrame.to_hdf : Write DataFrame to an HDF5 file.
    DataFrame.to_sql : Write DataFrame to a SQL database.
    DataFrame.to_parquet : Write a DataFrame to the binary parquet format.

    Examples
    --------
    >>> original_df = pd.DataFrame({"foo": range(5), "bar": range(5, 10)})
    >>> original_df
       foo  bar
    0    0    5
    1    1    6
    2    2    7
    3    3    8
    4    4    9
    >>> pd.to_pickle(original_df, "./dummy.pkl")

    >>> unpickled_df = pd.read_pickle("./dummy.pkl")
    >>> unpickled_df
       foo  bar
    0    0    5
    1    1    6
    2    2    7
    3    3    8
    4    4    9

    >>> import os
    >>> os.remove("./dummy.pkl")
    wb)r   moder   NF)r   is_textr   )r   )
r   
isinstancestrr   pickleHIGHEST_PROTOCOLwritedumpsclose
ValueError)
r	   r
   r   r   	fp_or_buf_should_closeffh_f r   2/tmp/pip-build-7vycvbft/pandas/pandas/io/pickle.py	to_pickle   s"    B
r    )r
   r   c       	   %   C   s  t | |d\}}}}t|t r,|dkr,d}t|d|dd\}}zy^ttttf}y.tj	dd tj
d	t tj|S Q R X W n |k
r   tj|dd
S X W n tk
r   tj|dd
S X W d|j  x|D ]}|j  qW |ry|j  W n tk
r
   Y nX X dS )a<  
    Load pickled pandas object (or any object) from file.

    .. warning::

       Loading pickled data received from untrusted sources can be
       unsafe. See `here <https://docs.python.org/3/library/pickle.html>`__.

    Parameters
    ----------
    filepath_or_buffer : str, path object or file-like object
        File path, URL, or buffer where the pickled object will be loaded from.

        .. versionchanged:: 1.0.0
           Accept URL. URL is not limited to S3 and GCS.

    compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None}, default 'infer'
        If 'infer' and 'path_or_url' is path-like, then detect compression from
        the following extensions: '.gz', '.bz2', '.zip', or '.xz' (otherwise no
        compression) If 'infer' and 'path_or_url' is not path-like, then use
        None (= no decompression).

    Returns
    -------
    unpickled : same type as object stored in file

    See Also
    --------
    DataFrame.to_pickle : Pickle (serialize) DataFrame object to file.
    Series.to_pickle : Pickle (serialize) Series object to file.
    read_hdf : Read HDF5 file into a DataFrame.
    read_sql : Read SQL query or database table into a DataFrame.
    read_parquet : Load a parquet object, returning a DataFrame.

    Notes
    -----
    read_pickle is only guaranteed to be backwards compatible to pandas 0.20.3.

    Examples
    --------
    >>> original_df = pd.DataFrame({"foo": range(5), "bar": range(5, 10)})
    >>> original_df
       foo  bar
    0    0    5
    1    1    6
    2    2    7
    3    3    8
    4    4    9
    >>> pd.to_pickle(original_df, "./dummy.pkl")

    >>> unpickled_df = pd.read_pickle("./dummy.pkl")
    >>> unpickled_df
       foo  bar
    0    0    5
    1    1    6
    2    2    7
    3    3    8
    4    4    9

    >>> import os
    >>> os.remove("./dummy.pkl")
    )r   r   NrbF)r   r   T)recordignore)encodingzlatin-1)r   r   r   r   AttributeErrorImportErrorModuleNotFoundError	TypeErrorwarningscatch_warningssimplefilterWarningr   loadpcUnicodeDecodeErrorr   r   )	r
   r   r   r   r   r   r   Zexcs_to_catchr   r   r   r   read_picklec   s.    A
r0   )r   )__doc__r   typingr   r   r)   Zpandas._typingr   Zpandas.compatr   r.   Zpandas.io.commonr   r   r   r   intr    r0   r   r   r   r   <module>   s   T